Magnetic circuit examples

Parameters of the arrangement:

$$
\text { - } \mu_{\text {core }}=\infty
$$

- Uniform cross-sectional area of $1 \mathrm{~cm}^{2}$.
- $g_{1}=1 \mathrm{~mm}, \quad g_{2}=2 \mathrm{~mm}$
- $N=200$ turns.
- No fringing in air gaps.

Compute the self-inductance.
Steps: 1. Draw magnetic circuit and calculate the magnetic flux ϕ.
2. Compute self-inductance λ, that is proportional to i. The proportionality
constant is self. inductance \mathcal{L}. constant is self. inductance \mathcal{L}.

Magnetic circuit:

$$
\begin{aligned}
& R_{1}=\frac{g_{1}}{\mu_{0} \cdot A_{\text {core }}}=\frac{1 \times 10^{-3}}{4 \pi \times 10^{-7} \times 1 \times 10^{-4}} \frac{A-t}{\omega_{b}} . \\
&=8 \times 10^{6} \mathrm{At} / \mathrm{\omega b}_{b} . \\
& R_{2}=\frac{g_{2}}{\mu_{0} A_{\text {core }}}=2 R_{1}=1.6 \times 10^{7} \mathrm{~A}-\mathrm{t} / \mathrm{\omega}_{b} . \\
& \therefore \phi=\frac{N_{i}^{0}}{R_{1} \| R_{2}} \quad \begin{aligned}
R_{1} \| R_{2} & =R_{1} 112 R_{1} \\
& =\frac{2 R_{1}^{2}}{3 R_{1}} \\
& =\frac{2}{3} R_{1} .
\end{aligned} \\
& \Rightarrow \lambda=N_{\phi}=\underbrace{\left.\frac{N^{2}}{\frac{2}{3} R_{1}}\right)}_{:=2 L} i
\end{aligned} \quad \begin{aligned}
i=\frac{200 \times 200}{\frac{2}{3} \times 8 \times 10^{6}} \mathrm{H}=7.5 \mathrm{mH} .
\end{aligned}
$$

(2)
 Assume $\mu_{\text {core }}=\infty$.

In the arrangement shown above, let the reluctances of the air gaps be shown as above. Compute the mutual inductance $\frac{\text { New term! }}{\text { of the coils. }}$ of the coils.
Mutual inductance: How does the flux linkage of the first coil vary with the current in the other coil?
Let's compute it using a magnetic cirenit.

- Let's calculate ϕ_{1}, and ϕ_{2} in terms of i_{1}, i_{2}, R_{1}, R_{2}, R_{3}.

$$
\begin{aligned}
& N_{1} i_{1}=\phi_{1} R_{1}+\left(\phi_{1}+\phi_{2}\right) R_{3}, \\
& N_{2} i_{2}=\phi_{2} R_{2}+\left(\phi_{1}+\phi_{2}\right) R_{3} .
\end{aligned}
$$

An useful trick to solve simultaneous equations in 2 variables.

$$
\begin{aligned}
& \Rightarrow(\underbrace{\left(\begin{array}{cc}
R_{1}+R_{3} & R_{3} \\
R_{3} & R_{2}+R_{3}
\end{array}\right)}\binom{\phi_{1}}{\phi_{2}}=\binom{N_{1} i_{1}}{N_{2} i_{2}} \\
& \Rightarrow\binom{\phi_{1}}{\phi_{2}}=\binom{N_{1} i_{1}}{N_{2} i_{2}} .
\end{aligned}
$$

Digression: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.

$$
\begin{aligned}
\therefore\binom{\phi_{1}}{\phi_{2}} & =\left(\begin{array}{cc}
R_{1}+R_{3} & R_{3} \\
R_{3} & R_{2}+R_{3}
\end{array}\right)^{-1}\binom{N_{1} i_{1}}{N_{2} i_{2}} \\
& =\frac{1}{\left(R_{1}+R_{3}\right)\left(R_{2}+R_{3}\right)-R_{3}^{2}}\left(\begin{array}{cc}
R_{2}+R_{3} & -R_{3} \\
-R_{3} & R_{1}+R_{3}
\end{array}\right)\binom{N_{1} i_{1}}{N_{2} i} \\
& =\frac{1}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)\binom{N_{1}\left(R_{2}+R_{3}\right) i_{1}-N_{2} R_{3} i_{2}}{-N_{1} R_{3} i_{1}+N_{2}\left(R_{1}+R_{3}\right) i_{i}}} \\
\therefore \lambda_{1} & =N_{1} \phi_{1} \\
& =\frac{N_{1}^{2}\left(R_{2}+R_{3}\right)}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)} i_{1}-\frac{N_{1} N_{2} R_{3}}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)} i_{2}, \\
\lambda_{2} & =N_{2} \phi_{2} \\
& =-\frac{N_{1} N_{2} R_{3}}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)} i_{1}+\frac{N_{2}^{2}\left(R_{1}+R_{3}\right)}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)} i_{i} .
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1}=\underbrace{\left(\frac{N_{1}^{2}\left(R_{2}+R_{3}\right)}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)}\right.}_{:=\mathscr{L}_{11}} i+\underbrace{\left(-\frac{N_{1} N_{2} R_{3}}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)}\right)}_{:=\mathscr{L}_{12}} i^{i_{2}} \\
& \lambda_{2}=\underbrace{\left(-\frac{N_{1} N_{2} R_{3}}{R_{1} R_{2}+R_{3}\left(R_{1}+R_{2}\right)}\right)}_{:=\mathscr{L}_{21}} i+\underbrace{\left(\frac{N_{2}^{2}\left(R_{1}+R_{3}\right)}{\left.R_{1}+R_{3}+R_{1} R_{2}\right)}\right)}_{:=\mathscr{L}_{22}} i .
\end{aligned}
$$

$\mathcal{L}_{11}=$ self inductance of $\mathrm{coil}^{\circ} 1$
$\mathcal{L}_{22}=$ self inductance of $\mathrm{coi}^{\circ} / 2$.
$\mathcal{L}_{12}, \mathcal{L}_{21}=$ mutual inductance.
With an abuse of notation, we usually call $d l=\left|\mathcal{L}_{12}\right|=\left|\mathcal{L}_{21}\right|$ as the mutual inductance. How λ depends on the mutual inductance is decided through polarity markings, described below.

- $R=\frac{M}{\sqrt{L_{1} L_{2}}}$ is called the coupling conf.

When R is high (close to 1), we Call these coils tightly coupled. When k is closer to zero, they are loosely
coupled. coupled.

- We obtained expressions of the form

$$
\begin{aligned}
\lambda_{1} & =\mathcal{L}_{11} i_{1} \pm d l i_{2}, \\
\lambda_{2} & = \pm d l i_{1}+\mathcal{L}_{22} i_{2} . \\
\Rightarrow \quad v_{1} & =\mathcal{L}_{11} \frac{d i_{1}}{d t}+d l \frac{d i_{2}}{d t}, \\
& v_{2}= \pm \frac{d l d i_{1}}{d t}+\mathcal{L}_{22} \frac{d i_{2}}{d t} .
\end{aligned}
$$

Another example.

Suppose $\mu_{\text {core }}=\infty$, and $R=10^{6} \mathrm{~A} \cdot \mathrm{t} / \mathrm{Wb}_{\text {b }}$. Compute the self and mutual induretances of the two coils. Compute the coupling coefficient.

$$
\begin{aligned}
& 100 i_{1}=R \phi_{1}+R\left(\phi_{1}+\phi_{2}\right), \\
& 200 i_{2}=R \phi_{2}+R\left(\phi_{1}+\phi_{2}\right) . \\
& \Rightarrow\left(\begin{array}{cc}
2 R & R \\
R & 2 R
\end{array}\right)\binom{\phi_{1}}{4_{2}}=\binom{100 i_{4}}{200 i_{2}} .
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\Rightarrow\binom{\phi_{1}}{\phi_{2}} & =\left(\begin{array}{cc}
2 R & R \\
R & 2 R
\end{array}\right)^{-1}\binom{100 i_{1}}{200 i_{2}} \\
& =\frac{1}{(2 R)(2 R)-R^{2}} \cdot\left(\begin{array}{cc}
2 R & -R \\
-R & 2 R
\end{array}\right)\binom{100 i_{1}}{200 i_{2}} \\
& =\frac{1}{3 R^{2}}\binom{200 R i_{1}-200 R i_{2}}{-100 R i_{1}+400 R i_{2}} \\
& =\left(\frac{200}{3 R} \cdot i_{1}-\frac{200}{3 R} i_{2}\right. \\
\frac{-100}{3 R} i_{1}+\frac{400}{3 R} i_{2}
\end{array}\right) .
$$

Upon substituting $R=10^{6} \mathrm{At} / \omega \mathrm{\omega}$, we get

$$
\begin{aligned}
& \mathcal{L}_{11}=6.6 \mathrm{mH}, \quad \mathcal{L}_{22}=26.6 \mathrm{mH}, \\
& d W_{0}=6.6 \mathrm{mH} . \\
& k=\frac{d l_{0}}{\sqrt{\mathcal{L}_{11} \mathcal{L}_{22}}}=\frac{6.6}{\sqrt{6.6 \times 266}}=\sqrt{\frac{6.6}{26.6}}=0.498 .
\end{aligned}
$$

Polarity markings
These are dots put on the coils to indicate whether $+d l$ or $-M$ features in the voltage current relationship.
Agenda:
(1) polarity marking arrangement, how to draw polarity markings.
(2) Given polarity, markings, how to write "hoop equations"."
(1) Drawing polarity markings. Consider an example. Put the first dot on either

Algorithm:
Imagine a current going into coil at the dolled end as shown. Determine the direction of flux due to that current in the other coil as shown. Ask the question: Which end of the second coil should we drive current into that induces flux in that coil in the same direction?

Put dot where the fluxes ϕ_{1} and ϕ_{2} are in the same direction.

Another example:
Put this arbitrarily.

Driving current this way produces Flux in the sane direction.
\Rightarrow Put dot as shown.

(2) Deriving circuit equations or loop equations, given polarity markings.
Follow the rule below:-
$\left(\begin{array}{cc}\text { voltage difference } \\ \text { between dotted end } \\ \xi \text { non-dotted end }\end{array}\right)$
of a coil

$$
\begin{aligned}
& =\mathcal{L} \frac{d}{d t}\left(\begin{array}{l}
\text { current entering } \\
\text { the dotter end } \\
\text { of the same coil }
\end{array}\right) \\
& +d h_{e} \frac{d}{d t}\left(\begin{array}{l}
\text { enrent entering } \\
\text { the dotted end } \\
\text { of the other coil }
\end{array}\right) .
\end{aligned}
$$

Here, $\mathcal{L}=$ self -inductance of the $^{\text {coil in question! }}$
$d H_{0}=$ mutuded inductance between

Examples:-

$$
\begin{aligned}
& \mathcal{L}_{11}=6.6 \mathrm{mH}, \\
& \mathcal{L}_{22}=26.6 \mathrm{mH}, \\
& d_{l}=6.6 \mathrm{mH} .
\end{aligned}
$$

Consider the above arrangement that we have seen before, for which we computed the inductances.
(1). Put polarity markings.
(2) Derive v_{1} and v_{2} in terms of i_{1}, i_{2}, $\mathcal{L}_{11}, \mathcal{L}_{22}, M$.
Answering part (1): Erase all currents/voltages. Polarity markings only depend on the geomelny.

Verify the figure to your left.

Answering part (2): Start with the diagram with your polarity markings. Follow the rule to relate voltages f currents.

$$
\begin{aligned}
v_{1} & =\mathcal{L}_{11} \cdot \frac{d}{d t}\left(i_{1}\right)+d M \frac{d}{d t}\left(-i_{2}\right) \\
\left(-v_{2}\right) & =\mathcal{L}_{22} \frac{d}{d t}\left(-i_{2}\right)+d l \frac{d}{d t}\left(i_{1}\right) .
\end{aligned}
$$

Coupled coil representation:

An example with coupled coils:-

Write down KVL around the two paths shows in red.

Start by assigning voltages and currents.

- $v_{0}-i_{1} R_{1}-i_{2} R_{3}-v_{1}=0$
- $v_{0}-i_{1} R_{1}-v_{2}-\left(i_{1}-i_{2}\right) R_{2}=0$.
notice the

$$
\begin{aligned}
v_{1} & =L_{1} \frac{d}{d t}\left(i_{2}\right)+M \frac{d}{d t}\left(i_{2}-i_{1}\right)^{t} \\
-v_{2} & =L_{2} \frac{d}{d t}\left(i_{2}-i\right)+M \frac{d}{d t} i_{2}
\end{aligned}
$$

- Now, suppose U_{0} is sinusoidal, whose phasor is given by \bar{V}_{0}. Write the same KVL's with phasors.
$\cdot v_{0}-i_{1} R_{1}-i_{2} R_{3}-v_{1}=0$
$\cdot v_{0}-i_{1} R_{1}-v_{2}-\left(i_{1}-i_{2}\right) R_{2}=0$.
$\cdot v_{1}=L_{1} \frac{d}{d t}\left(i_{2}\right)+M \frac{d}{d t}\left(i_{2}-i_{1}\right)$
$\cdot-v_{2}=L_{2} \frac{d}{d t}\left(i_{2}-i_{1}\right)+M \frac{d}{d t} i_{t}$.
This is what we derived before. Let's write the phasor eq.

$$
\begin{aligned}
& \text { - } \bar{V}_{0}-\bar{I}_{1} R_{1}-\bar{I}_{2} R_{3}-\bar{V}_{1}=0 \\
& \text { - } \bar{V}_{0}-\bar{I}_{1} R_{1}-\bar{V}_{2}-\left(\bar{I}_{1}-\bar{I}_{2}\right) R_{2}=0 \\
& \text { - } \bar{V}_{1}=j \omega L_{1} \bar{I}_{2}+j \omega M\left(\bar{I}_{2}-\bar{I}_{1}\right) \\
& \text { - }-\bar{V}_{2}=j \omega L_{2}\left(\bar{I}_{2}-\bar{I}_{1}\right)+j \omega M \bar{I}_{2} .
\end{aligned}
$$

Exercise: You can solve for all currents $\overline{I_{1}, \bar{I}_{2}}$ and voltages \bar{V}_{1}, \bar{V}_{2} in terms of \bar{V}_{0}. Do it!

- So far, we have studied how to derive a coupled coil representation of an arrangement (a transformer) from its geometry and write KVL with it.
- Next on the agenda: Draw an inductor + ideal transformer representation of a transformer.
Ideal transformer:

An ideal transformer is a circuit component whose $i-v$ characteristics are given by

$$
\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}} ; \quad \frac{i_{1}}{i_{2}}=-\frac{N_{2}}{N_{1}} .
$$

- Can we conceptualize an ideal transformer from two coils wound around a core? Yes! You can. Let's derive if

Consider the arrangement shown.

This part is optional. Skip 5 pages including this one.

Suppose its magnetic circuit is given by

Let's compute $\phi_{1}, \phi_{2}, \phi_{1}+\phi_{2}$, and v_{1}, v_{2}.

$$
\begin{aligned}
& N_{1} i_{1}=R \phi_{1}+R_{g}\left(\phi_{1}+\phi_{2}\right) . \\
& N_{2} i_{2}=R \phi_{2}+R_{g}\left(\phi_{1}+\phi_{2}\right) . \\
& \Rightarrow\left(\begin{array}{cc}
R+R_{g} & R g \\
R_{g} & R+R_{g}
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}=\binom{N_{1} i_{1}}{N_{2} i_{2}} . \\
& \Rightarrow\binom{\phi_{1}}{\phi_{2}}=\left(\begin{array}{cc}
R+R_{g} & R_{g} \\
R_{g} & R+R_{g}
\end{array}\right)^{-1}\binom{N_{1} i_{1}}{N_{2} i_{2}} \\
&=\frac{1}{\left(R+R_{g}\right)^{2}-R_{g}^{2}}\left(\begin{array}{cc}
R+R_{g} & -R_{g} \\
-R_{g} & R+R_{g}
\end{array}\right)\binom{N_{1} i_{1}}{N_{2} i_{2}} \\
&=\frac{1}{\left(R+R_{g}\right)^{2}-R_{g}^{2}}\binom{\left(R+R_{g}\right) N_{1} i_{1}-R_{g} N_{2} i_{2}}{-R_{g} N_{1} i_{1}+\left(R+R_{g}\right) N_{2} i_{2}} \\
& \Rightarrow \phi_{1}+\phi_{2}=\frac{1}{\left(R+R_{g}\right)^{2}-R_{g}^{2}}\left[R N_{1} i_{1}+R N_{2} i_{2}\right] .
\end{aligned}
$$

$$
\Rightarrow \phi_{1}+\phi_{2}=\frac{R}{(R+R g)^{2}-R_{g}^{2}}\left(N_{1} i_{1}+N_{2} i_{2}\right) .
$$

Let's analyze the result as $R \downarrow 0, \operatorname{Rg}_{\mathrm{g}} \uparrow \infty$.

- Ry really large can be thought of as making the middle comm wider ε_{1} smaller.

- R very small $\equiv \mu_{\text {core }}$ really large.

Then, $\phi_{1}+\phi_{2}=\frac{R}{R^{2}+2 R R_{S}} \cdot\left(N_{1} i_{1}+N_{2} i_{2}\right)$

$$
\begin{aligned}
& =\frac{1}{R+2 R g}\left(N_{1} i_{1}+N_{2} i_{2}\right) \\
& \approx 0 .
\end{aligned}
$$

$$
\phi_{1}+\phi_{2} \approx 0 \Rightarrow N_{1} i_{1}+N_{2} i_{2} \approx 0 .
$$

Also, $\phi_{1}=\frac{1}{\left(R+R_{j}\right)^{2}-R_{j}^{2}}\left[\left(R+R_{j}\right) N_{1} i_{1}-R_{j} N_{2} i_{2}\right]$

$$
\begin{aligned}
& =\frac{R+R_{g}}{R^{2}+2 R R_{g}} N_{1} i_{1}-\frac{R_{g}}{R^{2}+2 R R_{g}} N_{2} i_{2} . \\
& =\frac{1}{R}[\underbrace{\frac{R+R_{g}}{R+2 R_{g}}}_{\approx \frac{1}{2}} N_{1} i_{1}-\underbrace{\frac{R g}{R+2 R_{g}}}_{\frac{1}{2}} N_{2} i_{2}] \\
& \approx \frac{1}{2 R}\left(N_{1} i_{1}-N_{2} i_{2}\right) .
\end{aligned}
$$

Similarly, $\quad \phi_{2}=\frac{1}{2 R}\left(N_{2} i_{1}-N_{1} i_{1}\right)=-\phi_{1}$.

$$
\begin{aligned}
& v_{1}=N_{1} \frac{d \phi_{1}}{d t}, \quad v_{2}=-N_{2} \frac{d \phi_{2}}{d t} . \\
& \Rightarrow \frac{v_{1}}{v_{2}}=\frac{N_{1}}{N_{2}} \cdot \frac{d \phi_{1}(d t}{-d \phi_{2} d t} \approx N_{1} / N_{2} .
\end{aligned}
$$

- What is self and mutual induetances of an ideal transformer?

$$
\left.\begin{array}{rl}
L_{1} & =\frac{R+R g}{R^{2}+2 R R g} N_{1}^{2} \quad \text { from the above } \\
\text { derivation. }
\end{array}\right] .
$$

Similarly $\mathcal{L}_{2} \rightarrow \infty$.

$$
M=\frac{R_{g} N_{1} N_{2}}{R^{2}+2 R R_{g}}=\frac{R_{g}}{R+R_{g}} \cdot \frac{N_{1} N_{2}}{R} \rightarrow \infty
$$

- Coupling corf.

$$
R=\frac{M}{\sqrt{\mathcal{L}_{1} \mathcal{I}_{2}}}=\frac{\frac{R_{g}}{R+R_{g}} \cdot \frac{M_{1} R_{2}}{R}}{\sqrt{\frac{R+R_{g}}{R+2 R_{g}} \frac{M_{1}^{2}}{R} \cdot \frac{R+R_{g}}{R+2 R_{g}} \cdot \frac{N_{2}^{2}}{R}}}=\frac{R_{g}}{R+R_{g}} \rightarrow 1 .
$$

\therefore For an ideal transformer, $\mathcal{L}_{1}=\mathcal{L}_{2}=M=\infty$.

Properties of ideal transformer:

$$
N_{1}: N_{2}
$$

called turns ratio", of ten denoted by ' a '.

$$
\begin{aligned}
& \frac{v_{1}}{v_{2}}=\frac{N_{1}}{N_{2}}=a \\
& \frac{i_{1}}{i_{2}}=-\frac{N_{2}}{N_{1}}=-\frac{1}{a} .
\end{aligned}
$$

When direction of i_{2} is reversed, then change sign on this relationship!.

Total power entereing the ideal transformer

$$
\begin{aligned}
& =v_{1}(t) \cdot i_{1}(t)+v_{2}(t) i_{2}(t) \\
& =v_{1}(t) \cdot i_{1}(t)+\left(\frac{v_{1}(t)}{\not a}\right)\left(-\alpha\left(i_{1}(t)\right)\right. \\
& =v_{1}(t) i_{1}(t)-v_{1}(t) i_{1}(t)
\end{aligned}
$$

$=0 . \quad$ Ideal transformer is lossless.
"Referring" a resistance.
Consider the following circuit:

- $\frac{v_{0}}{v^{\prime}}=a, \quad \frac{i}{i^{\prime}}=\frac{1}{a} \cdot\left(\begin{array}{l}\text { Notice... no negative sign. } \\ \cdots \text { why? Check the direction } \\ \text { of current. }\end{array}\right)$

$$
\therefore v^{\prime}=a \cdot i R \Rightarrow v_{0}=a v^{\prime}=a \cdot(a i R)=i\left(a^{2} R\right)
$$

Notice $v_{0}=i .\left(a^{2} R\right)$
\Rightarrow The resistance on the "secondary" side of the ideal transformer appears like a resistor with resistance $a^{2} R$.

In other words, we have referred R to the "primary" side of the transformer.

Convention:

Side with the source $=$ primary

Side with the lond $\left.=\begin{array}{l}\text { secondary } \\ \text { side }\end{array}\right]$

